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ABSTRACT

Milan Mäkipää: Comparison of OTA update frameworks for linux based iot devices
Master’s thesis
Tampere University
November 2022

Remotely updating IoT devices introduces several issues concerning the device and the deliv-
ery of updates. The devices should be able to recover from failed updates to a functional state.
Delivery of updates should scale with the size of the fleet in addition to the possibility of monitoring
the state of the devices.

The complexity of the updates has an effect on how difficult these previous issues are to
overcome. Only updating parts of the software is simpler and possible to implement in a way
where the integrity of the operating system is not endangered. Updating the entire operating
system makes it possible to deliver more overarching updates remotely, but failures in installation
can endanger the integrity of the system.

This paper introduces an use case based on an existing IoT system and compares three
update frameworks, SWUpdate, Mender and BalenaOS, for their suitability for providing remote
updates. The comparison is first done based on relevant documentation and other literature and
by further examining one with a proof of concept style prototype. This work only evaluates the
frameworks in prototype use cases. In production use all of them would require additional work to
integrate with the required security features.

Of the three frameworks, BalenaOS provides most of the required features while avoiding
some of the shortcomings of the others. However some of the advantages it has over other so-
lutions come with significant vendor lock-in. Additionally getting started with prototyping systems
with BalenaOS is somewhat difficult, if additional libraries have to be added to the root operating
system.

Keywords: Internet of things, OTA updates, Linux, Yocto, Mender, SWUpdate, BalenaOS
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TIIVISTELMÄ

Milan Mäkipää: Linux -pohjaisten iot-järjestelmien päivitystyökalujen vertailu
Diplomityö
Tampereen yliopisto
Marraskuu 2022

Päivitysmahdollisuuden lisääminen IoT laitteisiin luo haasteita sekä päivitettävään laitteeseen,
että päivitysten toimittamiseen liittyen. Päivityksiä vastaanottavien laitteiden tulisi säilyä toiminta-
kuntoisina, vaikka päivitysten asentaminen epäonnistuisi. Päivitysten toimitusketjun pitäisi myös
skaalautua laitteiden määrän kasvaessa. Myös laitteiden etävalvontaan liittyvät ominaisuudet saat-
tavat olla tarpeellisia.

Päivitysten kattavuus vaikuttaa edellämainittujen ongelmien ratkaisemisen haastavuuteen. Päi-
vittämällä vain osan järjestelmän ohjelmistosta, voi päivitystyökalu olla koskematta sellaisiin käyt-
töjärjestelmän osiin, joiden muokkaaminen voisi vaarantaa järjestelmän toiminnan. Koko käyttöjär-
jestelmän päivittäminen mahdollistaa laitteen toimintojen laajemman muokkaamisen, mutta päivi-
tyksen epäonnistuminen saattaa vaarantaa laitteen toiminnan.

Tässä työssä esitellään käyttötapaus olemassaolevalle IoT järjestelmälle. Käyttötapausta var-
ten vertaillaan kolmea päivitystyökalua, jotka ovat SWUpdate, Mender ja BalenaOS. Vertailu to-
teutetaan kirjallisuuskatsauksena saatavilla olevan dokumentaation ja muun kirjallisuuden perus-
teella. Yhden työkalun toimintaan tutustutaan tarkemmin toteuttamalla sillä prototyyppi päivitettä-
västä järjestelmästä. Työssä käytettyjä työkaluja vertaillaan vain kehityskäyttöön soveltuvassa ym-
päristössä. Mikään niistä ei sellaisenaan sovellu tuotantoympäristössä käytettävään laitteeseen,
sillä tuotantoympäristössä esimerkiksi tarvittavien tietoturvaominaisuuksien integrointi työkaluihin
vaatisi lisätyötä.

Kolmesta vertaillusta työkalusta BalenaOS kattaa parhaiten käyttötapaukseen liittyvät vaati-
mukset. Puutteita on myös muita työkaluja vähemmän. Työkalu on kuitenkin paljon muita vaih-
toehtoja riippuvaisempi palveluntarjoajasta. Työkalun käyttö kehitysvaiheessa on haastavaa, sillä
tarvittavat kirjastot on lisättävä käyttöjärjestelmään ennen sen asennusta kohdelaitteelle.

Avainsanat: Esineiden internet, Etäpäivitykset, Yocto, Mender, SWUpdate, BalenaOS

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

IoT devices often run without much human interaction. This presents a challenge on

delivering software updates to them. Over the air updates allow a device to be updated

without interaction from the end user. OTA updates can vary from the delivery of new

versions of pieces of software to completely replacing the firmware of a device. Installation

of the updates can be triggered either by an end user or from a remote server.

Triggering the deployment of updates remotely allows for IoT devices to be placed in

remote locations where constant physical access might not be feasible. It can also make

pilot phases of projects easier. A pilot device can for example be tested in a real world

environment, even while the software itself is still somewhat unfinished. As development

progresses new versions of the software can be deployed to the device.

Many OTA update frameworks use a client server model. The client periodically checks

with the server for updates and the server is responsible for providing those updates out

to the appropriate devices. Some OTA frameworks make it possible to deploy updates to

fleets of devices at once. These tools can also include ways of monitoring the devices.

Over the air updates present multiple challenges both on the device and the server side.

The device might not be easy to reach physically, and as such failure in deployment of

updates should not cause the system to be unable to function. Possible causes for such

failures could be issues with the updated software itself and possible power loss during

updates.

Additional issues might arise from the security of the update deployment pipeline. The

client should be able to verify that the updates it receives are from trusted sources and

the server should be able to separate different devices from each other. The updates

might also have to be deployed to an encrypted device.

Monitoring the state of devices is required to know when an update can be deployed and

if the deployments were successful. The device should be able to report it’s state to the

remote server.

The goal of this work is to compare three different update frameworks, BalenaOS, SWUp-

date and Mender, for the purpose of performing OTA updates on an IoT device. These

three frameworks were selected to be the focus of this thesis as they can be used for
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updating the entire OS of a device while not risking the integrity of the OS if the update

process fails. The comparison of the frameworks will mostly be based on relevant docu-

mentation regarding each framework. This is due to existing research, either comparing

such frameworks or evaluating them on a use case, being rare and difficult to find. In-

stead existing literature will mainly be referenced when establishing the justifications and

requirements for the use of OTA updates.

The most suitable tool will be further evaluated with a proof of concept that is specific for

an use case based on a customer project. The work will attempt to answer the following

research questions:

• Which of the three frameworks appears most suitable for implementing a remote

update system for the use case? What are the shortcomings of each framework?

• With the proof of concept further evaluate, if the chosen tool can be used to produce

a prototype that fullfills the needs of the use case.

This thesis will start with an overview of how OTA updates work and the related chal-

lenges. Section 3 will focus on introducing the different frameworks, their approaches

to the challenges OTA updates and how they differ from each other. Section 4 will go

through the use case and it’s requirements. Section 5 will compare the frameworks to

each other according to the requirements defined in section 4. After that the rest of the

thesis will focus on a proof of concept to further evaluate one of the three frameworks in

a real world use case.
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2. BACKGROUND

2.1 OTA updates instead of firmware patches

Firmware updates that are done via physical medium have been used widely as a way of

distribution. They can be done by the manufacturer updating each device separately or

by the end user of the device performing the update themselves with the update medium

provided by the manufacturer. However this approach doesn’t scale well as the amount of

devices in the field grows. Another problem with this approach is that the updates require

reaching the device physically. If some devices in the fleet are not easily reached, it might

leave them needlessly open to vulnerabilities that were otherwise easily fixed. With OTA

updates found vulnerabilities could be patched for all devices en masse. [1, p. 2]

The networks, over which updates are delivered, can vary. One example would be a peer

to peer system where devices are connected to each other directly. Alternatives might be

networks with either connections to a central hub or a mesh like structure, where data is

distributed between devices in the network. Delivering updates in methods other than via

a direct connection is more challenging as a trustworthy connection must be established

between two remote parties. [2, p. 7] The latter chapters in this work will focus on update

systems, where there is a central server that provides updates to client devices over the

internet.

2.2 Conventional IoT and edge computing

Conventional IoT systems have an end device and a cloud service, which does majority of

the data processing for a system. The IoT device itself acts as a frontend to interact with

the systems’ environment via for example sensors and actuators. These type of cloud

centric systems have various shortcomings that can be improved on with the use of edge

computing. In edge computing parts of the responsibilities of the cloud can be moved

either onto the IoT device itself or to nodes that are closer to the device. [3, pp. 3-5]

There are multiple benefits to offloading parts of the computing to the IoT device. Conven-

tional systems are limited by the bandwidth between the IoT device and cloud, availability

of a network connection and the latency of that connection. With edge computing for

example in classification use cases the collected sensor data doesn’t have to be relayed
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onto the cloud. Instead the classification can be done on the IoT device and only the re-

sults have to be reported. Alternatively several individual IoT devices might be connected

to a server, which does the computing, but is still a step away from the cloud and easier

to reach by the device. [3, pp. 3-5]

Increasing the responsibilities of the IoT device also increases the attack surface and

consequences of successful attacks by malicious parties. An edge node might handle

data that was previously stored in the cloud. As a result in addition to all the sensor data

that was collected by the device, the data moved from the cloud to the edge would be

available to an attacker if they gained access to the device. [4, pp. 11] Such data might

also include machine learning models that are used for data classification mentioned

earlier.

As previously mentioned conventional IoT systems do majority of resource heavy compu-

tations in the cloud. [3, pp. 3] Updating the cloud components of such system is relatively

straight forward as they rely on technologies such as virtual machines and containers.

The amount of resources available in the cloud makes it possible to store multiple ver-

sions of for example container images. Replacing the currently running container image

or migrating it to another datacenter is also possible. [3, p. 36]

Maintaining edge computing nodes is more difficult as some of the previous responsibil-

ities of the cloud have been moved onto the edge devices. The edge devices are often

more resource constrained than their cloud counterparts and as such deploying updates

can be more difficult. Edge computing also introduces another challenge of discovering

and categorising the devices to recognize which devices an update should be deployed

to. The deployed software must be fit for the device in cases where there are multiple

different devices with similar but somewhat differing capabilities. [3, pp.35-36]

2.3 IoT security risks

Compared to offline only devices, IoT devices are connected to internet and that makes

them subject to additional attack vectors. Additional security risks are introduced by the

complex nature of IoT systems. The importance of ensuring the security of such devices

can be partially justified by their use cases. As an example IoT systems are common

in healthcare applications, where the compromising on security is unreasonable. [5, pp.

1-3]

IoT systems face threats both on the frontend device and in the network it uses. Attacks

on the physical device can vary from compromising a device to replacing it entirely. In

both instances the attacker could gain some level of access to the wider system or simply

feed malicious data to the system. Erroneous data could be used to affect the results

the system produces or a malicious device could spam the network with data to create a
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denial of service attack. [6, p. 59]

The network level threats of an IoT system can include eavesdropping, where an attacker

could try to intercept unencrypted data from for example a wireless communication. Other

attack methods can be man in the middle attacks, where the malicious actor tries to

insert itself between a device and the node it’s communicating with. While the devices

themselves can be used to create denial of service attacks, the network level is also

subject to them. Flooding a node with requests can affect the availability of that node to

the other nodes in the system. [6, pp. 59-60]

An example of possible consequences an IoT device getting infected with malware is the

Mirai botnet. The attack relied on a piece of malware propagating through unsecurely

configured IoT devices. Each infected device scanned random IP addresses for possible

targets and attempted to access those with a predefined set of credentials. When access

to a new device was gained it was reported to a remote server. A separate central server

then instructed the new devices to download a version of the malware suitable for the

specific system. That server could also trigger infected devices to commence distributed

denial of service attacks. [7, pp. 80-82] The significance of this botnet stems partially

from it’s size spanning hundreds of thousands of devices. In 2016 it was used to create,

at the time, the largest recorded DDoS attack with a capability of around 1.2 Tbit/s. [8,

pp. 1-2]

Updating the software of IoT devices frequently can be one method of keeping the device

secure. [9, pp. 223-224] Additionally the functional requirements of a device might change

over time, and updates allow for the software to keep up with the changes. [10, p. 55]

2.4 Risks of remote updates

Adding update capabilities to devices also brings some additional risks. The worst case

scenario is that failures in the update process make a large amount of devices unusable.

Some of the possible causes include the possibility of power loss while the update is

being installed, the possibility of network connection failure during the update, or running

out of storage space. Additionally some devices might be using different versions of the

various pieces software on the device, which could lead to incompatibility issues when

one part of the system is updated. [11, p. 133]

The update process also increases the attack surface of the device. For example if an

attacker can make the device upgrade or downgrade the software at will, they might be

able to switch the firmware to a specific version that is more vulnerable. [11, p. 131] The

update system can also be vulnerable to eg. Man-in-the-Middle attacks. [12, p. 3] With

those a device might be sent counterfeit messages to get it to act in the interests of the

attacker. Another attack method might be spoofing, where a non trustworthy part of the
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system attempts to gain access by posing as legitimate. [13, p. 87]

2.5 Challenges of delivering updates remotely

The challenges of delivering updates can be split roughly into two categories: data and

service integrity. Data integrity means ensuring that the device cannot be updated with

new software from an unauthorized party. Service integrity means that accessing the

update provider, downloading and installing of the software is done without tampering.

[12, p. 3]

Data integrity can be verified by checking that the update was created by a trusted party.

This can be achieved with the usage of digital signatures and by checking the hashes of

the incoming update files.[12, p. 4]

Additionally the updates have to be protected to avoid theft of intellectual property or

other sensitive data. One method of achieving this at a large scale is using asymmetric

cryptographic keys to encrypt updates. However this also introduces the issue of storing

these keys securely on the end device. One such approach can be the usage of a trusted

platform module or other hardware security modules to store the necessary keys. That

way the encryption keys don’t have to be accessible directly by the operating system. [14,

pp. 3-5]

Other challenges include that the complexity of the software on an IoT device might re-

quire updates to be installed to various different components on the device. Updating

a one component on the device might cause unexpected behaviour in others. To solve

this issue individual component updates should be tracked independently to detect risks

of updating only parts of the system. In the other hand updates might be delivered by

different providers. As such a device might have to be able to verify updates from various

sources. [15, p. 2]

The hardware resources taken up during the installation of updates might temporarily

affect the operational capabilities of the device. In such cases it might be desirable to

delay the installation until the load and availability requirements on the device are low.

[15, p. 2]

2.6 Different approaches of recovery from update failures

Considerations must be made for recovery options in case of failed updates. The device

should be able to recover back to a functional state in case an update has failed. Addi-

tionally installing updates might introduce some downtime in the operation of the device.

This can happen both while an update is being installed or if the device needs to reboot

to finalize an update.[10, p. 55-56]
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Failure tolerance for updates can take multiple forms. For example in a Linux based

system one option would be to only update individual files of noncritical applications and

as such ensure that the core operating system remains untouched. An example of such

method would be Mender’s Update Module system which only updates individual files or

directories, but doesn’t touch the kernel or devicetree.[16] However in such case updating

the entire system would not be possible.

To allow for safe updates to the core operating system, there has to be a foolproof method

of recovering from a failed update. Such approaches can be either symmetric or asym-

metric. Asymmetric systems have a regular operating system held on a one disk partition

and an additional minimal recovery system on a separate partition. System updates are

applied to the regular operating system, but in case of update failure, the recovery system

remains functional and it can still repair the main operating system. [17, p. 4988]

Symmetric systems have two root partitions. Both contain a functional operating system,

but only one is active at a time. An update is applied onto the inactive partition. After an

update the labels of active and inactive partitions are flipped in the bootloader and the

device reboots. If an update is successful, the device will boot from the updated partition.

If the device fails to boot, the still intact older version can be used as a fallback. This

system however will require twice the disk space of a regular operating system installation.

[17, p. 4988]

2.7 Managing a fleet of devices

In addition to simply delivering updates to IoT devices the entire fleet of devices can

change over time. As such the management system for those devices must be able to do

many other things in addition to simply delivering new firmware versions. Such additional

responsibilities include provisioning new devices or decommissioning them, monitoring

and tracking the software running on the device and configuring the devices. [18]

Provisioning devices with unique certificates makes it possible to differentiate them from

each other. This is necessary, as devices can have user specific needs that require mod-

ifying a configuration on device basis. The ease of configuration has to be streamlined to

minimize work per device to allow for operation in a large scale. Some type of authenti-

cation is also necessary to prove that a device is trustworthy. It also helps with verifying

that data provided by the device has not been tampered. [18]

Many of the update tools that are discussed later in this work not only implement the up-

date management part of the IoT device management. Instead they include some or all

of the above device management aspects. For example many of the tools include meth-

ods for provisioning new devices and methods of authenticating devices with a remote

server.[19]
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Additionally some update systems have tools for managing fleets of IoT devices beyond

just triggering updates remotely. These can include phased rollout of updates, in which

a group of devices is updated in consecutive batches. For example an update could

first be deployed to a small group of devices. If the update is successful, it can then be

automatically deployed out to the rest of the fleet. This way possible software bugs can

be caught before they are delivered to many devices.[20] Alternatively some systems also

allow for parts of a fleet to be held back on a specific version of the software. Depending

on the environment this might also be an useful feature.[21]

2.8 Monitoring

A software that is capable of IoT device monitoring can provide information on the current

state of the device. This can include the level of resource usage, firmware state or version

and the state of applications that are running on the device. [22, p. 1163] The status of

the device can also be used to monitor the success of update deployments. This can be

beneficial for example when using a phased rollout of updates.

Monitoring can also be used to respond to attacks on IoT devices. By monitoring the

device closely one can detect abnormal behavior and potentially respond to that by de-

ploying security fixes. [22, p. 1163] Alternatively when it is detected that a device has

been compromised, it can be isolated from the network. [2, p. 7] For example some up-

date frameworks allow the access keys of devices to be revoked, so that they won’t have

access to future versions of the firmware. [23]
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3. FRAMEWORKS FOR OTA UPDATES

This chapter will give an introduction on the three update frameworks, that were selected

for comparison. Those frameworks are BalenaOS, Mender and SWUpdate. They were

selected to be the focus of this thesis as they can be used to deploy OS updates to a de-

vice remotely. Additionally each of them has some mechanism for recovering from failed

updates by using redundant file systems. [24] [25] [26] All of the frameworks are based

on Yocto project, so that is introduced first to give more context on how the frameworks

work. The last section also describes an alternative framework that could be used for de-

ploying updates. However compared to the other frameworks it has some shortcomings

that will also be described. The comparison of the frameworks will be done in chapter 5

after introduction of the use case and requirements in chapter 4.

3.1 Yocto Project

Yocto project is used as a base by several OTA frameworks. For example Both Mender

and SWUpdate can integrate with an operating system image generated with Yocto. [27]

[28] Yocto project provides tools for generating Linux distributions that are compatible with

a broad variety of hardware architectures. Yocto is flexible in that software components

can be reused and layered on top of each other. Another major benefit of using Yocto

is it gives its user control on what features they want to add to the distribution build. For

example a graphical user interface could be foregone if the device has no need for it. [29]

Only installing the required software can save disk space and other hardware resources.

The tools of Yocto project can be used to produce a bootloader, Linux kernel and a root

filesystem that are compatible with the target architecture. Poky is a subset of Yocto

project that provides the tools for managing the various sources of software that are to

be built. Additionally it includes a task runner Bitbake, which used to manage the build

process. [30, pp. 6-9]

With Yocto, pieces of software are introduced to the operating system via recipes. Usually

a single recipe will contain instructions on how to install a single application and how do

the necessary configuration for that software. [31] Recipes are grouped together into

repositories called layers. They are used to isolate irrelevant parts of software from each

other to allow reuse and also simplify modifying existing software. An example of a layer is
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Figure 3.1. Balena partitioning layout.

a board support package (bsp), which can be provided by a hardware vendor. Such layer

can include changes and configurations, that are needed to support a specific platform.

Other software can be introduced via other layers and can be reused for multiple different

platforms. [29]

Each of the frameworks, Mender, SWUpdate and Balena use Yocto project to provide lay-

ers to introduce necessary modifications for them to work with specific device types.[27]

[28] [32] For example Mender provides a meta-mender layer, which makes modifications

to the distribution’s bootloader, kernel and partition layout. [27]

3.2 BalenaOS

BalenaOS is a combination of several tools that create a framework for delivering updates

both for the operating system and user applications. User created software is meant to

be run in docker containers, which isolates them from the operating system. This should

also allow for containers to be reused on different platforms. [24]

The remote server is provided either by balenaCloud, which is a commercial service or

via openBalena, which provides a more restricted version of the cloud platform for on

premises hosting. [33]

3.2.1 Update mechanism

Updating BalenaOS is separated to updating containers and the underlying operating

system. Operating system updates have no effect on the containers due to the system

partition layout, which separates the OS and container images. The partition layout is

described in figure 3.1 [24]

Operating system updates make use of a symmetric root partitions. When an update is

available it’s downloaded to the inactive partition and the bootloader switches to boot from

that partition. This ensures that in case of a failed update, the system retains the previous

OS version, which it can revert then back to. [24]
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User applications are delivered to the device as docker container images. The operating

system runs a Supervisor, which checks for and downloads new images onto the device

when needed. When a container is replaced with an updated one, it can be stopped

either before or after the new container image has been downloaded. This allows for

either minimal downtime by having two images stored in the device at once or saving of

storage space by removing the old one before fetching the newer one.[34] [24]

Balena supports persistent storage for data via docker named volumes. Inside the con-

tainer a program can access the volume from the /data directory. Volumes can be shared

between multiple containers and they are kept intact when container images are up-

dated.[35] They are also kept in a separate partition, so operating system updates don’t

affect them either.[24]

3.2.2 Security and authentication

All connections to the remote server are initialized by the device itself. As such using

BalenaOS doesn’t require opening ports on the device for incoming network traffic. Addi-

tionally communication between the device and server is TLS encrypted.[23]

New devices are initialized with a provisioning key, each of which is only valid for a single

use. That key allows them to request an API token from he backend server. The token

then allows for the new device to initiate new connections with the server. All updates and

software modifications are triggered by the server. Additionally each new device receives

an unique API token, and they can be revoked remotely. As such a compromised device

can be removed from the fleet.[23]

3.2.3 Cloud integration

There are two options for interacting with the balenaCloud services. The first is balena

CLI, a command line interface, that can be used to push new images to the cloud. The

second is the cloud dashboard, from which devices and updates can be managed with a

web browser. [36]

Prebuilt operating system updates are downloaded directly from the cloud as they are

both published and hosted by balena. Distributing new versions of docker images on to

devices is also done by the cloud service. There are multiple ways of pushing new docker

images to the cloud. [36]

First method is done by using the balena CLI to push a project directory to balenaCloud.

The directory root has to have either a Dockerfile or a docker-compose.yaml -file in it. The

cloud server will use these files to build a new image or a set of images. The second way

is to build the images locally and push the built image to the cloud. The third way is to
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add the balenaCloud server as a remote Git repository. After that git can be used to push

the project files to the cloud build server. [36]

The cloud dashboard allows separation of devices into fleets. When an update is pushed

to the cloud, it is automatically deployed to the target fleets. If a device or fleet should not

be updated, they can be pinned to a specific software version. [21]

The balenaCloud also provides remote access to every connected device with a recent

enough version of the operating system. The devices can connect to the cloud to create

a reverse tunnel for a ssh connection. As such the connection doesn’t require opening

ports from the device’s firewall. Alternatively a traditional ssh connection to the device

can be made, but that requires the corresponding port to be open and adding the client’s

public key to the device. [37]

An open source but more limited version of the cloud service is available via openBalena.

It allows the user to host their own instance of the remote server. However it’s missing

many of the features of the cloud platform. One of these is the web dashboard, which

provides a browser management view for the server. Instead it can only be used via

a command line utility. openBalena provides the core functionality of the cloud service,

which allows the user to initialize new devices and deploy updates to them. [38]

3.3 SWUpdate and hawkBit

SWUpdate is an open-source project that provides a very flexible approach to updating

Linux based devices. It’s can perform updates to a device from either local mediums

such as SD-cards or remotely over the internet. The flexibility of the system stems from

the ability to create and replace modules for various parts of the update process. For

example proprietary hardware etc. can be supported by creating a new update handler.

These handlers are called by SWUpdate when needed during the update process. [39]

SWUpdate has two major parts that can be used to implement remote updates. The first

is using SWUpdate in a mode called Suricatta, where the SWUpdate software will query a

remote server for available updates. When new updates are found, they are downloaded

and installed on the device. It’s also responsible for tracking and updating the state of the

bootloader to ensure that the system can recover from failures.[40] The default remote

server for the system is hawkBit. It’s a service by Eclipse, that provides the ability to roll

out updates and monitor devices remotely. [41] hawkBit can also connect to a completely

custom remote server, but that would require implementing the required interface for the

backend or modifying the hawkBit to function with the new remote server[40]

SWUpdate supports the usage of both symmetric and asymmetric partition layouts. With

the symmetric layout the system has four partitions: bootloader, primary operating sys-

tem, secondary operating system and persistent data. By default the bootloader loads
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Figure 3.2. The two available partitioning layouts on SWUpdate.

the operating system from the primary partition. When an update arrives, it is installed

on the secondary partition, and on the next reboot the bootloader will flip to read that one

instead. In case of a failed update the bootloader can always revert back to the previously

active partition. The last partition is for persistent data that is not modified by system up-

dates. This approach is similar to those that both Mender and BalenaOS use for system

updates. [26]

The possibility to use an asymmetric partition layout is one factor, where SWUpdate dif-

fers from other update tools. It might be needed for example when the amount of storage

space on the device is not enough for hosting two entire filesystems at once. This ap-

proach uses three partitions: one for bootloader, one for an update system and one for

the actual operating system. The update system is a minimal linux kernel, that includes

the necessary software to update the operating system partition. By default the boot-

loader loads a kernel from the operating system partition. When an update is triggered,

the system must reboot to the update system partition, which can fetch the update. After

the update has finished, the system can again reboot to the new operating system. This

approach has no hot swappable fallback in case of a failed update. However the system

can still reboot to the update system, and wait for a new update.[26] Both partitioning

approaches are described in figure 3.2

3.3.1 Backend (hawkBit)

The default backend server supported by SWUpdate is hawkBit. It’s a completely sepa-

rate project and agnostic to how to the client performs the update installation. Instead its

purpose providing and managing updates and devices. [41]
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hawkBit has functionality to to deliver updates to groups of devices at once. A feature that

seems to be unique to hawkBit is the ability to perform cascading update rollouts. This

means that after an update has been delivered to a group of devices and installed suc-

cessfully, it can be automatically delivered to other larger groups of devices. This staged

rollout can be configured to stop automatically in case of some milestones aren’t met. For

example if a certain percentage of devices in a group doesn’t update successfully. This

should allow catching erroneous updates before they have propagated to a large amount

of devices. [20]

3.3.2 Security features

SWUpdate has a feature to determine that the received updates are from a trusted source.

It’s is based on signing updates with a private key before publishing them. The devices

can then verify the authenticity of the updates with a public key. Signing entire update

images might not be feasible, as the signature cannot be verified until the entire image

has been downloaded. To solve this issue each update can contain a description file. If

the update is provided in a set of smaller sub-images, the hashes of those images can be

stored in the description file. That file itself can then be signed and verified. When each

sub-image is downloaded, they can be hashed and compared to the known valid value.

[42]

The SWUpdate documentation didn’t state any authentication policy for differentiating

between devices or how new devices are added to a fleet.

3.4 Mender

Mender is a remote update framework that uses a similar client-server architecture as

balenaOS. The device runs a client program that polls the remote server for updates

periodically. New updates are published to the remote server, which then informs the

corresponding clients that a new update is available. It also supports updating devices

from a physical medium without connection to a server. In such case the updates would

be triggered by an user of the device. However this mode of operation is not relevant to

the use case. [25]

For remotely managed updates, Mender supports two types of update mechanisms, appli-

cation and full system updates. Application updates modify individual files or directories.

System updates use a symmetric partitioning layout to update an inactive partition with a

new version of the operating system. [25]

The standalone Mender client software can be installed on Debian based systems. The

client contains tools that are necessary for converting an existing Debian based operating

system image into one that has the redundant partitioning layout. Alternatively mender



15

Figure 3.3. Mender partitioning layout for use with system updates.

provides a set of Yocto layers for integrating with a system or use case that cannot use a

Debian derived operating system. [43] [44]

3.4.1 Update process

This work focuses on updating the entire system and not just parts of the software, so

with Mender only the full system updates are relevant and described. Creating a system

update with Mender requires a source system, which is in the state that the update should

represent. The update consists of a snapshot of that system, which contains the state of

the active OS partition. The snapshot is then compressed. The snapshot is specific to

that single type of device, so a new shapshot will have to be generated for each platform

separately. Each snapshot is generated for a specific type of device. This allows the

server to determine which devices are compatible with the update. [45]

After the snapshot has been created, it’s uploaded to the remote server. The user can

then trigger the update on a specific device or a set of devices via a web interface.[45]

After that the relevant client devices will download the update and place it on the inactive

OS partition. After the update is finished, the bootloader is switched to read that inactive

partition during the next boot. If the system fails to boot to the newly activated partition,

the bootloader reverts back to using the old version and a fail safe redundant system is

achieved. [25] The partition layout is visualized in figure 3.3.

The Mender client software can also run shell scripts in various stages of the update

process. These stages include before and after downloading or installing of the update

and in case of update failure. These scripts are delivered as a part of the update. The

scripts can have multiple use cases. For example they can attempt to verify in more detail

that the update was successful or they can request an end user for approval for the update

to be installed. [46]

Mender also allows storage of configuration files and persistent data on a separate parti-

tion. This is not touched by the system update mechanism. It’s purpose is similar to that

of BalenaOS. However it is supposed to be accessed directly in the filesystem instead of

using it via a docker volume. [45]
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3.4.2 Authentication and security

When a new device is intialized, the Mender client will attempt to connect to a predeter-

mined server. Authentication is based on public/private key pairs. Additionally a device

is identified by it’s MAC address and optionally other identifying keys. The authentication

request is signed by the private key stored on the device during device initialization, and

the server can then verify the request with the corresponding public key. [19]

After the device has authenticated with the server, the user must approve it in the remote

servers web dashboard. An approved device receives an authorization token, which can

be used for further communication. Each token has an expiration date, after which the

device has to re-authenticate with the server. Alternative method of authentication is plac-

ing signed certificates on the device beforehand and using them to identify and approve

the device automatically. [19]

Communications between the server and client are always initialized by the client soft-

ware. As such using Mender doesn’t require opening ports on the device for incoming

traffic. Additionally all communications are using TSL encryption. [47]

3.5 Alternative update frameworks

Besides the three tools that were described, others potential options exist for Linux based

OTA updates. However many of them have some shortcomings, which make them less

suitable for the use in this comparison.

An example of such tool is AWS Greengrass. It is a set of tools provided by Amazon,

that allow a Windows or Linux based IoT device to receive and install OTA updates from

AWS cloud services. The updates consist of components which can be program binaries,

docker images or AWS Lambda functions. If the components are individual programs,

they can be updated independently from each other. [48]

AWS labels individual devices as things. It supports combining these things into groups

which can be updated together or on device basis. By default Greengrass automatically

rolls back the version of a software in case of a failed update. [49] Additionally Greengrass

has various methods of monitoring individual devices. These include logging and health

monitoring. Logs are stored on the device by default, but can be requested and read from

the cloud interface. [50] Device health monitoring is achieved by each device sending

update messages to the cloud whenever the device’s status changes. These changes

can include updates being installed or components going from functional to an erroneous

state. This status can then be checked by the user from the cloud interface. [51]

The reason why AWS Greengrass isn’t included in the compared tools is that it’s meant to

only update the software components and core client software instead of the entire oper-



17

ating system [48] However this approach doesn’t have to deal with issues that introducing

redundant software causes.
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4. TEST ENVIRONMENT REQUIREMENTS

4.1 Environment and use case description description

The focus for this work is from a customer project, where there was a requirement for

remotely updating an IoT system. The projects goal was to produce a new iteration of an

existing IoT device on an embedded system. To prototype the system Google’s Coral dev

board was chosen as the initial platform..

The previous version of the device was a x86 based system. The devices are setup on

remote premises without much interaction by the end user. They process data collected

via sensors and a camera. The results are then sent to a cloud service, so the devices re-

quire a cellular internet connection. This iteration of the device requires remote access to

adjust configurations and for installing updates or delivering new versions of the software.

The goal of the project was to produce a more scalable and secure solution for updating

the devices. With the new iteration, each device still needs some initial configuration after

it has been setup in the target environment. After that interventions should only happen

when there is for example a hardware issue.

4.2 Hardware

The Coral dev board is a development board that is meant to be used for prototyping

systems for on device machine learning purposes. The device itself is not meant for

production use, but a System on a Module (SoM) is available. The goal of the customer

project was to prototype the system on the dev board. If successful, a scalable product

could have been created with the SoM by designing a custom board around the module

with the required IO capabilities.

The main reason that the Coral dev board was chosen for prototyping was the tensor pro-

cessing unit on the device. Offloading the classification of results onto the TPU and parts

of image processing to the GPU allowed for much lower power device to be used. An-

other advantage of the Coral dev board was ready availability of hardware in comparison

to other vendors, which had much longer order lead times.

The main features of the dev board include[52]:
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• NXP i.MX 8M SOC with a 1.5GHz quad core ARM CPU and a Vivante GC7000Lite

GPU

• 1GB of RAM

• 8GB of internal eMMC storage

• An edge TPU tensor processing unit

4.3 Requirements and challenges

Requirements for the system cover multiple areas. Those can be roughly split into func-

tional, security and scaling.

Functional requirements include:

• Remotely triggering device updates

• Ability to recover from failed updates or power loss during updates without external

intervention

• Unique data persistency between updates

• Resource usage

• Hardware compatibility

The first requirement is the original driving factor behind this work. The goal is to demon-

strate a system where updates can be triggered remotely. The second requirement ex-

pands on that with the requirement of some type of redundancy or fault tolerance. If

failure tolerance wasn’t required, even something like the inbuilt package manager, might

be suitable for updating the device. Also during the deployment of an update it should not

be possible for the device to end up in a state, where it could not recover to a working

state without external intervention.

The third requirement is related to the need to be able to configure devices independently

of each other. The goal is for the devices to be running the same software, but as each

device needs some environment dependent tuning, the related configurations must be

saved on the device and not be altered between updates.

The devices are run in environments where they depend on a cellular connection for

sending data between the device and cloud. As a result, the ideal situation is one, where

the amount of data downloaded per update is minimized. The resource limitations also

exist in the amount of available storage space, as the internal eMMC is limited to 8GB. As

such the size required by the update framework is hopefully minimal to free disk space

for useful payloads. Using a micro-SD card is preferably avoided, as that would make it

way easier for a malicious actor to extract data from the device.

The last requirement is derived from the fact that the software that is used runs several
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times slower on the Coral dev board in comparision to the earlier x86 based machine. To

avoid resource starvation several optimizations have been done for the Coral version of

the software. First, the program uses the GPU via OpenCL to do some image processing,

which would take up too much CPU resources. Additionally some classification is done

on the TPU. The required drivers and libraries would have to be present in an operating

system, which integrates with the selected update framework. For example using OpenCL

requires installing GPU drivers.

Security Requirements include:

• Authentication with both the device and remote server

• Secure transfer of updates

The first one requires that the server is able to identify different devices from each other.

Also for example if the disk of one physical device is cloned to another, it shouldn’t be

able to identify with the remote server. Additionally the device should have some method

of validating that the server is a trusted source for receiving updates from.

The latter requirement guarantees that the integrity of the updates is kept free from tam-

pering. An example solution might include the usage of an encrypted transfer medium or

signing of the update packages.

For physical security, encryption of the device is something that is desired by the cus-

tomer. However such features go much beyond a prototype and from preliminary searches

it seems that almost no update methods are designed to work with disk encryption without

major modifications.

Scalability requirements include:

• Fleet division and updates

The goal of this requirement is to guarantee the possibility of scaling beyond a few dozen

devices. With a large amount of devices updating each device one by one would not be

desirable. Instead it should be possible to deploy updates to entire fleets. Division is

also beneficial by allowing the use of multiple target architectures within a single update

ecosystem. This is not relevant at the time of writing this work, but a need to deploy

devices with differing architecture might arise at a later date. Additionally creating fleets

of devices would allow testing of new versions of the software in specific pilot locations

before updates are deployed more widely.

4.4 Beyond a proof of concept

The requirements that were described above are suitable for a proof of concept demon-

stration, but additional changes would have to be made for a production ready implemen-



21

tation. For example considerations would have to be made in regards to ensuring the

security of the end device. For example hardware root of trust would have to be estab-

lished to prevent the execution of unauthorized software and disk encryption could be

used to prevent physical tampering of the device.

Such security considerations were mostly left out of the requirements that were introduced

earlier. That also means the comparison of the frameworks will only take into account the

needs of a proof of concept and not a production environment. However the iMX SoC

of the Coral dev board does provide several features that could be used to implement

security features.

For example Arm TrustZone and High Assurance Boot are mentioned on the dev board

datasheet.[52] However the documentation doesn’t state if the kernel and bootloader al-

ready support these features or if modifications would have to be made.

Arm TrustZone would allow for two separated software environments to be run on a single

processor. One of the environments would be deemed as unsecure, and would have no

direct access to the secure environment. Safety critical operations such as handling

cryptographic keys could be offloaded to the secure environment to keep them out of

reach from the non trusted software. Communication between the secure and unsecure

environments happens via specific software to limit the exposure of the secure area. [53]

High Assurance Boot, or HAB, could be used to initialize the hardware root of trust on

the device by verifying a bootloader before it is allowed to execute. For it to work the

bootloader image is signed with a private key and the corresponding public key would be

stored securely on the device by burning one time use fuses. During a boot the device

can verify the bootloader signature and only allow the execution of trusted bootloaders.

[54] In the customer project this feature was implemented as a standalone feature to

demonstrate that its use is possible on the Coral dev board. Even though support for

the feature was listed in the device datasheet, the bootloader had to be recompiled to

support some required functionality. To be usable with an update framework additional

work would most likely be needed. This is because some update frameworks make their

own changes to the bootloader. Changes made by both would have to be integrated

together. [25]

After the bootloader has been verified the chain of trust would have to extend to the

operating system. This could potentially be achieved with a U-boot feature called Verified

boot. It gives the bootloader the ability to check if a kernel image has been signed similarly

to how HAB works with the bootloader.[55]

To account for the physical security of the device disk encryption could be implemented.

However some of the frameworks won’t support encryption out of the box and imple-

menting support might require lots of work. Additionally there would have to be a secure
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place to store the encryption keys on the device to make boot without requiring user input

possible.
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5. COMPARISON AND ANALYSIS OF THE

FRAMEWORKS

This chapter compares the three frameworks according to the requirements described

in chapter 4. The goal of this chapter is to find out which of the three best meets the

requirements and why. Each section is focused on one of the requirements.

5.1 Functional

5.1.1 Remotely triggering updates

Triggering the update process remotely is the most important requirement for the use

case and all of the three make it possible. [36] [25] [41] BalenaOS and Mender provide

a browser based dashboard, from which the user can pick which devices are to be up-

dated and select which update is to be delivered.[36] [25]. SWUpdate doesn’t provide the

backend for the system, but Eclipse hawkBit is responsible for providing the interface to

upload the update to the server and push it out to devices.[41]

One advantage of BalenaOS is that it uses a supervisor program to start and stop con-

tainers when needed during the update process. This makes it possible to automate the

startup of programs after an update has finished and when the device is booting up.[34]

SWUpdate and Mender documentation do not mention similar functionality, so similar

control of the applications would have to be implemented separately. However Mender al-

lows for an update to include shell scripts that can be run before or after various stages of

the update process. These could be used to achieve similar functionality, but those scripts

have to be embedded into each update, whereas with BalenaOS it should be possible to

completely automate the process. [46]

5.1.2 Recovery from failed updates

Balena divides updating the system into two separate issues. One is updating the operat-

ing system and the other the docker container images. Operating system updates use the

symmetric partitioning as a recovery method from failed updates. Always keeping a func-

tional system on at least one partition should make it possible to recover from an update
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failure in a timely manner. However rebooting the system will introduce some downtime

[24]

Updating the docker images can be done with different policies. If minimal recovery time

is desired, the hand-over mode will guarantee that the new container will already be

running before the old one is stopped and removed. However this will require the end

user to define a policy in the new and old containers to determine when handover is

acceptable. If no instant handover is required, other approaches can stop and remove the

old container for example either before or after the replacement has been downloaded.

[34] This gives some flexibility for balancing storage use and uptime.

The balena cloud service provides remote access to each device from the web interface.

[37] This might be useful in debugging issues where the device can boot and connect

to the internet, but there is some other problem with the updated software. Additionally

this could be used for configuring new devices. The use case requires setting some

parameters that change based on the device’s environment. However the feature requires

access to the dashboard, and as such is not usable on openBalena version.[37]

With Mender the system updates also require rebooting the device after each update.

This introduces downtime both in case of a successful and failed update. Longer in the

latter, as the system will attempt to load the updated version before reverting back to the

old one. [25] Rebooting cannot be avoided unlike with BalenaOS, where the applica-

tion containers can be updated on the fly. Additionally file updates cannot substitute the

container updates, as the changes would be replaced with the next system update.[25]

Mender can also provide a remote terminal to connected devices via the web interface.

This requires a mender-connect addon to be installed on the target device. The addon

communicates with the remote server via a websocket connection forwarding user inputs

to a shell and passes the outputs of the sell to the remote server. [56] As with the remote

access feature of BalenaOS, the remote terminal with Mender might be useful when con-

figuring new devices or debugging issues after updates. The feature also doesn’t seem to

be restricted to any commercial version of Mender, as it’s available from the regular web

UI. [56]

With SWUpdate the introduced downtime depends on the partitioning layout. With sym-

metric partitioning the functionality is very similar to Mender, where after an update has

been written to the inactive partition, the system reboots and attempts to boot from that.

In case of failure, the system will revert back to the old partition. If the recovery partition is

used, the system will have to wait until a working operating system has been downloaded

and installed, before the system will again be functional.[26]
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5.1.3 Unique data persistency between updates

All three of the frameworks use a separate partition for storing persistent data. Such parti-

tions are not modified by the update process. [26] [35] [45] With SWUpdate the persistent

partition is only mentioned when referencing the symmetric partitioning. [26] The remote

terminal features of BalenaOS and Mender could be used to modify the persistent data

on the device for example when configuring devices.

5.1.4 Resource usage

Bandwidth usage was defined as an aspect of resource usage. One method of minimizing

it is only downloading parts of an update that are different from what is already on the

device. The frameworks have somewhat different approaches to this.

Mender supports delta updates, which attempt to only deliver the necessary data for

updating the system from the previous version to the next one. To create a delta update,

the user must have an existing update artifact for the older version and use a newly

generated artifact to parse which parts of them are different from each other. As an update

is being deployed, the remote server will check if the target device’s inactive partition

matches any of the delta updates and deploys one if possible. Multiple delta updates can

be created for updating from various older versions and a full image can be used as a

fallback. However this feature is restricted to the commercial version of Mender. [57]

Updating software on BalenaOS takes advantage of the layer based architecture of a

Docker image. During an update only modified layers are downloaded. Additionally recent

versions of BalenaOS add support for their own version of delta updates, where different

versions of the Docker images are compared on the content level. These update deltas

can be created on demand by the remote server based on what software a target device

is running. [58] The delta update feature is only available with the cloud server. [38]

SWUpdate documentation mentions a few methods of delivering partial updates. The

client software can use various handlers to support these features. For example an rdiff

handler can fetch binary delta patches generated with librsync.[59] Alternatively a Delta

update handler can fetch updates using a zchunk format. With the latter an update is split

into chunks, and only those not already present on the device have to be downloaded.

[60] The SWUpdate documentation doesn’t seem to focus on how these update deltas

are created. Instead the handlers focus on fetching already generated deltas.

Another aspect of resource usage is the disk space that is required for the usage of the

framework. Mender requires two root partitions to be present. [44] As the entire software

stack has to be present on both partitions, the total required disk space is almost doubled

in comparison to not using any update tool. To save space one could move some parts of
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the software stack to the persistent partition. However that would require managing them

more difficult as they would have to be updated via the file update strategy, which lacks

any type of versioning system.

SWUpdate with the symmetric partitioning suffers from the same drawbacks with Mender.

Avoiding two separate filesystems can compress the update and recovery partition down

to under 8MB. [26] However this has it’s drawbacks that were described previously in

regards to the recovery time from failed updates.

BalenaOS also uses similar partitioning layout for the main operating system. However

the root partitions are mounted as read only and they only store the core operating sys-

tem itself. That allows the duplicated partitions to be small in comparison to the rest of

the system. Applications are stored as docker images in a separate partition that can

automatically expand to fill up rest of the available disk space. [24] The savings in storage

space can only really be achieved, if an old version of a docker image is removed from the

device before a new one is downloaded. In such case a failed update would require the

system to refetch the older version to revert back to it. Another noteworthy finding is that

according to a BalenaOS developer it should be possible to flash BalenaOS the internal

eMMC of the Coral dev board as an alternative to using a microSD card. [61]

As the use case is heavily resource dependant, one possible shortcoming of BalenaOS is

the containerization of software running on the device introducing some overhead. Com-

parisons between native and containerized applications have previously been done in re-

search papers. For example an IBM research paper from 2015 which compared database

performance when docker versus a native environment. It presented results where I/O

performance was around 2% worse with Docker in comparison to a native Linux. It’s

mentioned in the paper that I/O and OS level actions are affected by containerization and

CPU performance and memory usage should be minimally affected. [62, pp. 171-172]

5.1.5 Hardware compatibility

This requirement concerns the Coral dev board support of each framework. Additionally

it covers the support of board specific features that are required by the use case.

It should be possible to integrate each of the frameworks to the device. Mender uses

Yocto to introduce the necessary modifications for Coral dev board compatibility. [63]

In the previous reference, support for the internal eMMC memory is mentioned to be

untested, but it has been demonstrated separately. [64]

The Mender build uses a meta-coral Yocto layer to provide support packages for the

board. [63] This layer includes various libraries for the TPU support. [65] Additionally the

meta-coral layer depends on a meta-freescale layer which provides gpu drivers with the

imx-gpu-viv -package. [66]
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BalenaOS provides a prebuilt operating system image and a guide for initializing the dev

board with such image. The guide also describes usage of the TPU with an example

project and as such the necessary libraries can be presumed to have been included in

the base image. [67] GPU drivers might not be included in the prebuilt image, but building

a custom image is possible by using board specific repositories. [32] The Coral specific

repository includes the same meta-coral and meta-freescale layers as with Mender. As

such GPU drivers should be available to a custom built operating system image.[68]

SWUpdate documentation doesn’t specify Coral support explicitly. However it’s supposed

to be integrated with Yocto via a layer. [28] This could make it possible to integrate

SWUpdate with a Yocto build, that supports Coral, via the meta-coral layer or otherwise.

However this approach would presumably take much more work than the other two, as

hardware specific aspects of the system updates haven’t previously been demonstrated.

5.2 Security

5.2.1 Authentication with both the device and remote server

The authentication of a Mender device is done based on a key pair that is stored on the

device. Additionally other identifying parameters are used by the server to distinguish be-

tween devices. These can include eg. the mac address of a device. The authentication

requests are singed with a private key and the corresponding public key is included in the

request. A server keeps track of these requests until an user approves the device. An

approved device will receive an authentication token as a response for the next authenti-

cation request it makes. The client includes the received token in future communications

with the server. After the token expires the device will request a new one from the remote.

[19]

The registration can also be preauthorized by generating the key pair beforehand and

submitting it to the remote server. When a new device is initialized, the same key pair is

stored on the device. When the device then makes an authentication request, the remote

server can automatically approve it and return a authentication token. [19]

The device determines the trustworthiness of the server based on the root certificate

authorities that are available on the operating system. Alternatively the user can use for

example self signed certificates. [69]

BalenaOS uses a provisioning key for initial authentication with the remote server. The

key is preloaded on the device and it allows the device to join a predetermined fleet. After

joining each device receives an API key, which is included in future requests. The API

key can be revoked remotely and as such a compromised device can be removed from

the fleet. [23]
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The update images that are deployed, can be built locally before they are published to the

cloud server or alternatively they can be built by a separate build server. When building

an image, the build server can fetch the required base image either from Docker Hub or a

private docker registry. In such instances the server might need to authenticate with the

registry. The required credentials have to be set on the build server, before it can reach

those registries. [36]

SWUpdate based devices can interact with the hawkBit remote server in multiple authen-

tication modes. The most open policy is one, where any device is allowed to query and

download updates. Such approach might not be feasible for the use case of this work,

but hawkBit documentation states it as a possible option for situations, where the updates

themselves are encrypted to protect the contents and anonymous downloading is not an

issue. Other possible authentication policies use tokens. The token can either be pro-

vided by the device within a request or it can be added by a gateway that sits between

the device and server. [70]

5.2.2 Secure transfer of updates

Mender and BalenaOS use TLS for secure communication between the remote server

and the device.[23] [47] SWUpdate supports TLS connections with some additional con-

figuration. [71] Additionally Both Mender and BalenaOS always initiate the connection

from the device and as such no open ports are required for incoming traffic on the device

itself. [23]

Some of the frameworks support signing the updates to make it possible for the target

devices to verify their authenticity. For example Mender supports using key pairs to sign

update artifacts. A new artifact is signed using a private key and the client software can

use a corresponding public key to verify it. [72] Additionally each update artifact includes

metadata with a checksum of the update contents. This allows the client to check if the

delivered artifact has been corrupted during transit. [73]

SWUpdate also supports signing the update images with a private key. The feature is sim-

ilar to Mender in functionality. [42] Additionally SWUpdate supports symmetric encryption

for update images. [74]

For BalenaOS there wasn’t any documentation found on the subject of signing updates.

Docker itself provides a feature called content trust, which allows the creator of the image

to sign it with a private key. When the image is downloaded from the container registry, the

recipient can verify the integrity and publisher of the image with an corresponding public

key. [75] However it seems that currently BalenaOS is not capable of checking whether

the images match the public key. [76] Docker has a builtin feature where it verifies fetched

layers using checksums. [77] When not using delta updates, BalenaOS downloads new
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container images this way, so they can be protected from being corrupted in transfer. [34]

5.3 Scalability

5.3.1 Fleet division and updates

Separation of devices into groups is important for example in situations where parts of the

fleet are used for piloting new versions of software. All of the frameworks provide some

type of support for separating devices into groups.

Mender supports dividing devices into groups using the management UI or via a separate

API. The simpler division into groups can be done by manually assigning each device into

a static group. A device can only belong to a single static group at once. Alternatively

devices can be added automatically into dynamic groups based on some attributes. [78]

The groups can be leveraged when creating new deployments of updates. When a de-

ployment is made to a static group, it is deemed to have finished after each device in the

group has been updated. With dynamic groups the deployment will remain in progress

even after each device has been updated. The deployment will only finish after being

stopped by the user, or after they meet a specified criteria of number of updated devices.

[79]

The balenaCloud management view also supports creation of new fleets of devices. [80]

The fleets can be updated and managed independently of each other. [21]

hawkBit is responsible for the remote management of devices using SWUpdate. It should

also support splitting devices into groups. While the workflow for doing that is not explicitly

defined in the documentation, the rollout management still describes the ability to install

updates in cascading stages of groups. Additionally these groups can be chained together

for a cascading roll out. In such configuration an update is first delivered to a group of

devices. If enough devices update successfully, the update is then rolled out to a growing

number of devices. The feature supports configurable limits for how many devices have

to succeed in either percentages or number of devices. In case the limit is not met with a

certain group, rest of the roll out is stopped. [20]

The commercial versions of Mender support a similar feature where the user can use the

management view to split the update process into phases. The phases include attributes

for which percentage of target devices should be updated by each phase, and how long

the wait should be between phases. The user can monitor the progression and halt it

if problems arise. [81] Additionally the regular Mender deployment allow the delivery of

updates to both static and dynamic groups of devices. [79]

By default BalenaOS rolls out updates automatically to all devices of the fleet whenever

the update is available. To prevent updates from being installed on a fleet, it can be pinned
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to stay behind on the current release version. A pinned fleet can later be set to update to

a specific newer release version or to revert back to tracking the latest available version.

Pinning devices can also be done on per device basis or in groups based on arbitrary

device tags. [21] These features could be used to achieve a similar cascading release

as with the other tools, but it requires manual work during each update to set a specific

version for each device group.

5.4 Results

These results only evaluate the frameworks based on the requirements set for the proof of

concept. A production ready device would have a more expansive list of requirements es-

pecially concerning the security of the end device. Some methods for securing the device

were introduced in section 4.4. Such features would most likely have to be implemented

by the developer of the IoT system. For example no documentation on any of the com-

pared frameworks seem to mention any type of possibility for the use of disk encryption

in an updateable system. Other features such as achieving hardware root of trust might

be possible by modifying the linux distribution that is integrated with each framework.

The amount of required configuration for a functional installation in addition to the uncer-

tainties with hardware compatibility make SWUpdate unsuitable for the use case. Mender

and BalenaOS provide a clearer path for implementing a working system on the Coral

platform.

The documentation of both Mender and BalenaOS describe a feasible method of deliv-

ering updates to the Coral platform. Both use a similar approach for ensuring recovery

from failed operating system updates. The main drawback of Mender is that the entire

system besides bootloader must exist twice on the disk. This restricts the available stor-

age space heavily if using the internal 8GB eMMC. BalenaOS somewhat avoids this issue

while maintaining a functional versioning system for application updates. Additionally the

performance impact of using containers should be minimal.

Hardware compatability of both Mender and BalenaOS should be nearly to identical. This

is due to the compatibility being provided by the very same Yocto layer. Both will likely

require customization of the default configuration to add GPU drivers and other depen-

dencies.

Ease of scaling the number of devices is should be similar with both Mender and Bale-

naOS. Both support division of devices into groups and groups can be updated indepen-

dently from each other. Devices can still be managed one by one. Both also include

monitoring tools for keeping track of state of devices.

The one major advantage Mender has is the ability to host the update server on premises

instead of the cloud interface. The openBalena server is much more limited than the cloud
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Table 5.1. Results for comparison of update frameworks

Requirement SWUpdate Mender BalenaOS

Functional

Remotely triggering updates + + ++

Recovery from failed updates + + +

Data persistency + + +

Resource usage + - ++

Hardware compatibility - + +

Security

Authentication + + +

Transfer + + +

Scalability

Fleet division and updates ++ ++ +

version.

The benefits and shortcomings of each framework in regards to the use case require-

ments are presented in table 5.1.
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6. PROOF OF CONCEPT

Of the three compared frameworks, BalenaOS was selected to be studied further with a

proof of concept. The reason that BalenaOS was selected is that generating updates as

container images can be much more straight forward than having to create a snapshot

of a running system. Additionally compared to the other frameworks, the additional stor-

age requirements presented by BalenaOS are smaller due to the OS installations being

minimal and the applications being stored in a single partition.

6.1 Previous work and goals for the proof of concept

Before much research was done into alternative options, some testing had already been

done in the customer project. During that work it was demonstrated that the required

OpenCL platform could be configured on a Mender compatible Yocto image. However

as mentioned in the previous chapter, Mender mirrors the entire operating system instal-

lation, and as such the usable space available on the eMMC was heavily constrained.

Additionally deploying updates was quite cumbersome. Creating an update artifact re-

quired setting up a complete device from which the artifact was generated. Every update

would have been a full system update. Remote file updates could be done, but those

were overwritten by the next full update. Finally there were some issues with the built in

update handler erasing the relevant bootloader environment variables. This would make

the bootloader lose track of active and inactive partitions and the state of the update pro-

cess. This made it possible for a device to be rendered unusable after an update unless

the variables were set again manually.

The goal of this proof of concept is to try to replicate what was previously attempted with

Mender. The goals include demonstrating that the OS can be installed on the Coral dev

board and that both OS and container updates can be deployed to the device. Additionally

it is necessary to demonstrate that GPU drivers, a OpenCL platform and the libraries

related to the TPU can be setup correctly. Finally the prototyping should demonstrate that

deploying updates to BalenaOS requires less work than when using Mender, as this was

one of the main reasons BalenaOS was deemed better for the use case.
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Figure 6.1. Creating a new fleet in balena cloud.

6.2 Proof of concept setup and usage

6.2.1 Initializing a fleet in balenaCloud

To start prototyping an account was created to balenaCloud. After that a new fleet was

added as shown in figure 6.1. Next we could move forward to creating an operating

system image that will connect to the fleet.

6.2.2 Generating a custom image for adding extra features

The prebuilt operating system images, provided by Balena, didn’t include the required

GPU drivers or OpenCL related utilities, so an attempt was made to build a custom version

with the additional features present. The following steps were taken to generate an flasher

image, which could be used to install the system on the device.

Yocto documentation lists compatible versions of host operating systems, which can be

used for building the OS image. The compatible operating systems are dependent on the

version of Yocto that is used for building the image. For use for Coral dev board Yocto

3.0, or zeus, was required. This is because it was the latest version that is supported by

the meta-coral layer, which provides board specific support. The latest host OS version

compatible with Yocto 3.0 was Ubuntu 18.04, so that was used. [82] An attempt was made

to use a more recent 20.04 version, but newer versions of Ubuntu have for example an

updated version of the GNU C library, which has deprecated some features still required

by Yocto 3.0.

The build process mostly followed the README that could be found in the Coral board

specific BalenaOS repository but some changes were required to add the necessary

dependencies and libraries. The process for building a flasher image was as follows.
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Cloning the source repository:

git clone –-recursive https://github.com/balena-os/balena-coral

Initializing the build system:

./balena-yocto-scripts/build/barys –-remove-build –-dry-run

build/conf/local.conf was modified to add the necessary additional dependencies.

The edited file is included in appendix A.

Recipes related to OpenCL had to be manually copied into the Yocto directory structure,

as they were not available by default.

Repository: https://github.com/openembedded/meta-openembedded

Recipes from folder: meta-oe/recipes-support/opencl/

Into target folder within the Yocto project directory tree:

meta-oe/recipes-support/opencl/

To include the Vivante GPU driver in the kernel changes were made to the kernel defcon-

fig at:

meta/coral/recipes-kernel/linux/linux-coral/defconfig

By including: CONFIG_MXC_GPU_VIV=y at the end of the file.

The root file system size limit had to be increased to make room for the additions. The

following changes were added:

IMAGE_ROOTFS_EXTRA_SPACE = "100000"

IMAGE_ROOTFS_MAXSIZE = "530000"

At the end of the file in:

layers/meta-balena/meta-balena-common/recipes-core/images/balena-image.bb

After that the flasher image could be built with the following commands:

source layers/poky/oe-init-build-env

MACHINE=coral-dev bitbake balena-image-flasher

After the build was finished, the flasher image could be found from the following path:

build/tmp/deploy/images/coral-dev/<imagename>.balenaos-img
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6.2.3 Configuring custom operating system image to connect with

fleet

After the BalenaOS image had been created, it had to be configured to authorize it for

connecting to the correct fleet. The same balena-cli tool, which is used to deploy updates,

was used to configure the image. To configure the image a balena-cli tool was installed to

the Ubuntu development system. The version was 13.6.0. The following command was

used to authenticate with balenaCloud via a browser prompt.

balena login

After that the flasher image was renamed to balena.img and placed into the root direc-

tory of the cli-tool. The following command was run to configure the image. The fleet

parameter tells the system to connect to the fleet that was configured in the cloud dash-

board. The version parameter was necessary for the configuration to pass. It was set to

match the latest version available in the balena-coral repository.

balena os configure balena.img –fleet coralfleet –version 2.98.33

After these steps the image could be flashed to a microsd card and the system was

installed on the device by booting it with the card. After the initialized device had booted

up, it was visible in the cloud dashboard.

After the custom built operating system image had been installed, the availability of the

OpenCL platform could be verified by running clinfo on the device console. The tool

reported the available GPU and OpenCL platforms correctly.

6.2.4 Deploying application updates

Testing the deployment of software was done by using a project, which runs a sample

image classifier on the device’s onboard TPU.

The relevant project files can be found from:

https://github.com/milanfin/balena-coral-tests

The test application was packaged into a docker image according to a

Dockerfile.coral_env file. The file ending describes the target platform for the Balena

build server. Other file endings could be used for other platforms to allow a single project

to be deployed to several platforms at once.

Docker compose is used to make it possible to package multiple docker images to a

single deployment. Each image is introduced as a service in a docker-compose.yml
file. Finally a balena.yml file is used to specify additional metadata such as a list of

supported devices.
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The balena-cli tool was again used to authenticate with the cloud service.

balena login

The tool was then used to deploy the test project into the fleet, by running the following

command in the same directory as the balena.yml file.

balena push c o r a l f l e e t

This pushed the project contents to a build server and the update was deployed automat-

ically after the build was finished. The state of the update process could be followed in

the cloud dashboard, which displayed device states and devices specific logs.

From the logs it was possible to verify that the sample image classifier had been run

successfully using the onboard TPU. Updated versions of this software could be pushed

by modifying the project and redoing the deployment. The device could also be held back

in a specific version of the software by pinning it to a release from the cloud dashboard.

6.2.5 Shortcomings of the custom operating system image

It was discovered that currently it’s not possible to push custom operating system updates

directly to the cloud server. Instead only prebuilt operating system images can be selected

from the dashboard. There is documentation that states that third party image builders

should contact the provider for their custom image to be included in the build system.

This would presumably work by creating a repository of the project files and having a

separate build server build the OS image based on the contents of the repository. This

image would then be available for deployment from the cloud dashboard. [32] However

usage of a possibly commercial service to include a custom operating system build onto

the dashboard goes beyond the scope of this prototype.

Prototyping things with the custom image was somewhat difficult, as all modifications

have to be included when the image itself is built. When using a regular Debian based

operating system on the Coral dev board, it was possible to easily test install and remove

libraries and drivers after the system had been initialized. To emulate this a package

manager could be added onto BalenaOS, but installing packages and doing modifications

on a live device is difficult due to the OS using a read only root filesystem. However

this isn’t an issue in production environment, where generating updates should require

minimal manual work.

6.2.6 Operating system updates with a prebuilt OS image

To be able to test the operating system updates in any capacity, the prebuilt OS images

were used. A prebuilt image could be configured in balenaCloud as shown in figure 6.2.
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Figure 6.2. Configuring a new device.

The result was an image that could be flashed to a microsd card. Installation of the OS

was done as with the custom built image. After a new device had been flashed, it was

visible in the corresponding fleet in the cloud dashboard.

An older version, in this case 2.48.0+rev5 was purposefully installed to make it possible

to trigger an update to a newer OS version. Triggering an update to a newer version was

done from the cloud dashboard. Only a single device was updated, there was an option

to update the entire fleet, if more devices were available. The target update version was

2.56.0+rev1, which was the next available version. The update process first updated the

base operating system and after rebooting the supervisor. At the same time that this test

was run it was also verified that files that were manually placed on the persistent data

partition were not touched by the update process.

Testing recovery from failed updates was done rudimentally by removing power from the

device during the update process. The status of the update was followed from the dash-

board and on the first time power was cut was during the operating system update phase.

In this scenario the device recovered to the previous version of the operating system cor-

rectly. Restarting the update didn’t happen automatically but instead it had to be triggered

again from the dashboard.

The second scenario was removing power after the operating system update had finished,

but during the supervisor update. In this instance the device booted up to the new version

of the operating system successfully. After it had reconnected with the cloud service, the

supervisor update was retried automatically.
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Currently the latest available version is 2.67.3+rev2 from January 2021, so first party

updates don’t seem frequent unless more recent versions are available under commercial

licenses.

6.2.7 Logging, remote access and management tools

As determined in the comparison of the frameworks, the cloud dashboard provides a

method of remotely accessing the device terminal. The terminal was available when

an individual device was being viewed. It allowed for direct access to a root shell on

the device. Additionally the remote terminal could attach to docker containers that were

running on the device.

From the same device specific view an user can also view the state of each docker con-

tainer and the logs entries that they had generated. The logs could indicate for example

the process of individual containers being updated.

The cloud interface allowed for revoking the access of devices that have previously been

added to a fleet. Also location data was available for each device. Apparently the location

was determined from the public IP address, so could be somewhat inaccurate. [83]
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7. RESULTS FROM PROOF OF CONCEPT

7.1 Results compared to original requirements

When the proof of concept is assessed in regards to the original use case requirements

the results mostly correspond to those that were found in chapter 5. Almost all of the

functional requirements were met with the current prototype. Creation and delivery of

application updates was straight forward and the updates could be deployed from any

device that is capable of using the balena-cli tool. Also recovery from a failed installa-

tion of updates was demonstrated. The only issue was that delivering OS updates to a

customized OS image would require collaboration with the vendor of the framework.

Security aspects of the requirements are also met. For example the remote server can

distinguish individual devices from each other. Additionally the devices could be rebooted,

shut down or completely removed from the fleet via the remote server. The transfer of

updates happened over a TLS encrypted connection.

The scalability related features of the cloud service are robust. Devices could be managed

individually or a fleet could be created. A shortcoming in regards to scalability is that

most of the related features are dependent on using the cloud service. This introduces

significant vendor lock-in when using BalenaOS.

7.2 Other notable findings

It was possible to install the required software dependencies on the custom OS image.

However prototyping such system was cumbersome, as the OS image had to be regener-

ated any time a change had to be made to the libraries on the core OS. This also applies

to any security related features that might be desirable in a production ready device. For

example on Mender the OS could be modified after installation and changes could be

delivered as an operating system update. On BalenaOS the changes would have to be

introducing during the building of the OS image.

In regards to security the device is very vulnerable physically. The system was installed

in the eMMC which is soldered onto the board, so that should make accessing the file

contents a bit more difficult than if the system was installed on a microsd card. However
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booting the device from a microsd card is still possible and in that instance the user

can still access the internal memory. Some work was previously done in the customer

project looking into integrating High Assurance Boot with Yocto on the Coral dev board,

and it seemed to be possible to block the execution of untrusted bootloaders. However

including other features such as full disk encryption is difficult as BalenaOS and neither

of the other two frameworks are designed to work with an encrypted system. Even more

considerations would have to be made for an unattended boot with disk encryption, as the

devices would be in environments where there would not be a person to input a password

every time the device had to reboot.

Much of the documentation that is needed to make some libraries or security features

work with Yocto seem to be platform specific. For the Coral dev board or the Coral SoM

much of that documentation doesn’t seem to exist. As a result there is a lot off guess-

work on what needs to be done to make various parts of the system work. This makes

prototyping with Yocto slower than with for example the default operating system that is

provided to the Coral dev board by Google.
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8. CONCLUSION

Conventional IoT devices rely heavily on the cloud for processing data. Updating the

cloud part of the system is relatively straight forward. However moving parts of that data

processing onto the end device makes deploying updates to those same features more

difficult. Updating these devices causes concerns with the reliability and security of the

update process. Many reliability focused approaches store two versions of an operating

system on a single disk, a primary and a backup. An alternative approach can rely on a

minimal recovery operating system installation, that is used as a backup in case of failed

updates. Making a device updateable also introduces challenges on how the chosen

update approach functions with the desired security features. For example updating an

entire operating system of a device that relies on disk encryption is difficult.

Three update frameworks were compared to determine the most suitable option for re-

motely updating the entire operating system of a Google Coral Dev board. Of those

frameworks Mender and BalenaOS both had previous examples of their use with the tar-

get platform. Unlike Mender the approach used by BalenaOS didn’t require mirroring the

entire system installation on two partitions. Additionally BalenaOS uses containers, which

make it possible to update only parts of the system at once. Mender requires the entire

system image to be replaced each time a new release is deployed to the device. A table

describing how each of the frameworks fulfills the requirements of the test scenario can

be found at the end of chapter 5.

A proof of concept of an updateable system using BalenaOS was implemented on the

Coral dev board. Container image deployment and recovery from failed updates could

be demonstrated. The main issue with the proof of concept was that adding for example

device drivers onto the system installation proved difficult. A custom Yocto based image

could be generated, on which the required libraries and drivers could be installed. How-

ever prototyping was made difficult by a read only file system not allowing changes at

runtime. Additionally a major shortcoming of BalenaOS turned out to be that operating

system updates can only be pushed from the provider’s own repositories. As a result

publishing OS updates on the custom built version couldn’t be tested at this time.

Requiring the entire operating system to be updatable made the configurement of new

systems much more difficult than if a less comprehensive approach was used. Having to
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integrate the entire filesystem with the update framework removes a lot of flexibility that is

useful, when testing and developing new prototypes. Additionally using security features

such as disk encryption and verifying the bootloader and kernel is much more difficult if

those features have to be integrated onto a redundant system.
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APPENDIX A: LOCAL.CONF

BALENA_STORAGE = " over lay2 "

OS_DEVELOPMENT = "1 "

BB_NUMBER_THREADS ?= " $ {@oe. u t i l s . cpu_count ( ) } "

PARALLEL_MAKE ?= "− j $ {@oe. u t i l s . cpu_count ( ) } "

DISTRO ?= " res in −systemd "

RM_OLD_IMAGE = "1 "

USER_CLASSES ?= " b u i l d s t a t s image−mkl ibs image− p r e l i n k "

PATCHRESOLVE = " noop "

BB_DISKMON_DIRS = " \

STOPTASKS, $ {TMPDIR} ,1G,100K \

STOPTASKS, $ {DL_DIR} ,1G,100K \

STOPTASKS, $ {SSTATE_DIR} ,1G,100K \

ABORT, $ {TMPDIR} ,100M,1K \

ABORT, $ {DL_DIR} ,100M,1K \

ABORT, $ {SSTATE_DIR} ,100M,1K"

CONF_VERSION = "1 "

HOSTTOOLS += " docker i p t a b l e s "

ACCEPT_FSL_EULA = "1 "

IMAGE_INSTALL_append=" imx−gpu− v i v imx−gpu−v iv − t o o l s imx−gpu−v iv −

demos c l i n f o opencl − icd − loader "

OS_DEV_UBOOT_DELAY = "1 "

DISTRO_FEATURES_append= " wayland "
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